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SUMMARY 
A new method for the simulation of the translational and rotational motions of a system containing a 
sedimenting particle interacting with a neutrally buoyant particle has been developed. The method is based 
on coupling the quasi-static Stokes equations for the fluid with the rigid body equations of motion for the 
particles. The Stokes equations are solved at each time step with the boundary element method. The stresses 
are then integrated over the surface of each particle to  determine the resultant forces and moments. These 
forces and moments are inserted into the rigid body equations of motion to  determine the translational and 
rotational motions of the particles. Unlike many other simulation techniques, no restrictions are placed on 
the shape of the particles. Superparametric boundary elements are employed to achieve accurate geometric 
representations of the particles. The simulation method is able to predict the local fluid velocity, resolve the 
forces and moments exerted on the particles, and track the particle trajectories and orientations. 
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INTRODUCTION 

Particles suspended in fluids play an important role in many scientific and engineering problems, 
including pipeline transport of slurries, petroleum recovery, composite materials processing and 
blood flow. The prediction of the rheological properties of suspensions is thus an important 
concern. One particular method of determining the relative viscosities of suspensions is with the 
use of a falling ball rheometer.’, Falling ball rheometry is based upon Stokes’ law for a sphere 
sedimenting in a large expanse of fluid at  rest. The hydrodynamic interaction with the suspensions 
causes additional drag and the Stokes’ law must be modified. In the case of a dilute suspension, it is 
sometimes possible to predict the behaviour of the suspension by considering the hydrodynamic 
interaction between just two of the particles. Numerical work in this field has been limited because 
of the complexities of modelling these microstructure--flow interactions. This paper presents a 
boundary element method with which to study the hydrodynamic interactions between a 
sedimenting particle and a neutrally buoyant particle. 

Several methods have been developed in the past to calculate hydrodynamic interactions 
between immersed particles. Happel and Brenner’ used the method of reflections to study the two- 
sphere problem. Further studies of the two-sphere problem were conducted by ONeill and 
Majumdar4 using bispherical co-ordinates and by Ganatos et al.’ and Kim and Mifflin6 using a 
boundary collocation method based on an expansion of Stokes equations into appropriate 
eigenfunctions. Kim’ extended the method of reflections to the case of prolate spheroids. 
Durlofsky et by using the resistance matrix, were able to simulate the multibody problem. 
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However, all of these methods are limited to systems of high symmetry to reduce the number of 
unknowns. 

Although other numerical methods such as the finite difference (FD) and finite element (FE) 
methods are not limited to symmetric shapes, they pose difficult problems in performing the 
discretization. For the exterior problem, disturbances caused by the particles decay very slowly 
and thus a very large computational domain is necessary. Even for the interior problem, at each 
time step a new grid is required because of particle translation and rotation. The boundary 
element method (BEM) is well suited to this class of problems. As with FD and FE methods, the 
BEM is not restricted by the geometry. Since the BEM requires only the discretization of the 
boundary, the discretization can be translated and rotated with the particles. In particular, there is 
no distortion of the elements when the particles are rigid. 

The present study is based on a quasi-steady analysis of multiparticle Stokes flow interactions. 
Neglecting virtual mass and particle acceleration: the Stokes equations are solved at each time 
step using the REM. The resultant force and moment on each particle is determined by integrating 
the stress field over the surface of each particle. These forces and moments are then used in the 
rigid body equations of motion to translate and rotate the particles. The efficiency of the BEM in 
determining the quasi-steady solutions makes it  possible to follow the trajectories of sedimenting 
particles over many diameters. 

PROBLEM FORMULATION 

Consider the creeping flow in domain R past two particles PI and P, of arbitrary shape, where 
surfaces rl and T2 respectively appear as shown in Figure 1. The governing differential equations 
in terms of the dimensionless perturbed fluid velocity ui and pressure p are given by 

d2u,(x) ddx) 8u,(x) 
dxjaxj axi (?Xi 

-- -_ -0, X€R,  -- - 

where Cartesian tensor notation is employed. The perturbed fluid velocity satisfies the non-slip 
boundary condition on the solid surface; that is, 

ui(x) = - ui(x), x E r, (2) 

Figure 1 .  Problem geometry 
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where r is the union of rl and r2. At infinity, the velocity and pressure must possess the following 
asymptotic behaviour: 

ui (x )=O(R- l )  and p(x)=O(R-’) as R-rco, (3)  
where R is the distance from the origin to a point in the flow field. 

The fundamental solution for this set of differential equations is given bylo* 

where r = (x - y( and the comma denotes partial differentiation with respect to the appropriate 
Cartesian co-ordinate. Physically, u$ represents the ith component of velocity at the point x due to 
a point force in the j-direction at the point y; p; is the corresponding pressure. By considering a 
weighted residual statement of the differential equations with weighting functions given by the 
fundamental solutions (see e.g. Brebbia et al. ’), one may represent ui by a boundary integral as 
follows: 

r r 

where 

thef,s are the components of stress along the surface r, and the njs are the components of the unit 
outward-normal vector to the boundary r. The coefficient tensor cij appears, since in applying the 
divergence theorem to obtain the boundary integral equation (BIE, equation (6)), a portion of the 
domain about the field point 5 must be excluded in order to avoid the isolated singularity. 
Although the entries in the tensor can be determined from the geometry of the domain, it is simpler 
to evaluate them numerically by considering the case of uniform flow, from which it follows: 

Assuming that the velocities are known at a given time t ,  the BIE (equation (6)) represents a 
Fredholm equation of the first kind for the unknown stresses. In order to solve the BIE 
numerically, the boundary is discretized into N boundary elements and within each element the 
unknown stresses are assumed to be constant. (Reasons for the selection of the constant strength 
element are discussed below.) By applying the BIE (equation (6)) at the centroid of each element, 
one can generate a system of 3N linear equations in the 3N unknown components of stress. These 
stresses can then be integrated over the surface of the particles to determine the resultant force and 
moment. 

Although a complete description of the motion of the particles should contain the unsteady 
forces, their inclusion into the analysis would require prohibitive computational costs. Leichtberg 
et al.’ showed that except for start-up flows, the unsteady forces were of negligible importance. In 
the present study a quasi-static analysis is performed. That is, after an initial velocity (linear and 
angular) for the particles is assumed, the steady Stokes equations are solved by use of the 
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boundary element equations. At each time step the velocity, angular velocity, position and 
orientation of the particles are updated with the rigid body equations of motion. 

Several different types of boundary elements were tested in order to optimize the computer 
code. Previous studies13* l4 showed that relatively small changes in geometry can result in 
substantial changes to the flow field in the creeping flow regime. In order to approximate the 
geometry accurately, a superparametric boundary element was selected. In fact, when flat 
boundary elements were tested, the stress field oscillated about the true value. The oscillations 
disappeared when the boundary was approximated with the superparametric elements. Constant, 
linear and quadratic approximations for the source strengths were also tested. Although 
successively higher orders of approximation in the source strengths provided more accurate 
results, the number of unknowns also increased. Because some simulations could require up to 
4500 time steps, constant strength elements were chosen because they required the least 
computational effort. 

Several different time integration procedures were also tested: a fourth-order Runge-Kutta 
scheme; a variable time step, fifth-order Runge--Kutta scheme; a variable order 
Adams-Bashford-Moulton scheme; and a scheme using the Euler explicit method in the linear 
and angular velocities and third-order differencing in the displacements and rotations. Although 
the variable step Runge--Kutta and variable order Adams-Bashford-Moulton schemes were 
efficient in the sense that they automatically adjusted the time step to be as large as possible within 
stability limitations while at the same time keeping the local error within prescribed bounds, they 
proved to require the most computer time. The vast majority of the computational effort was spent 
in cvaluating the derivatives, that is, the forces and moments required in the rigid body equations 
of motion. Therefore schemes with elaborate error analysis were very expensive. In fact, the simple 
differencing scheme described below proved to be the most practical in terms of speed and 
accuracy. 

In order to simplify the kinematics, only problems in which the centres of the two particles are 
contained in a vertical plane of symmetry are considered. With this simplification, the translation 
of the particles is confined to the plane of symmetry and the rotation of the particles is confined to 
the axis perpendicular to the plane of symmetry. In these cases the rigid body equations of motion 
can be reduced to six first-order equations for each particle. (It should be noted that this 
simplification is not required by the BEM as the BEM provides fully three-dimensional results). 
The equations of motion are written below: 

where the subscript i refers to the ith particle, g is the gravitational constant, (yi,zi) are the 
components of displacement, 0, is the rotation, (vi, wi) are the components of velocity, oi is the 
angular velocity, pf is the density of the fluid, Vi is the volume of the particle, Ii is the moment of 
inertia, (Fyt, F J  are the components of the resultant force and M x ,  is the resultant moment 
calculated by the BEM. 

If t” represents the nth time step, then the y-component of displacement and velocity can be 
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expanded in a Taylor series as follows: 

dY, 1 d2yi 
yi(fn+')= yi(t")+-(t")At+ - T(tn)(At)2+O(At)3,  

dt 2 dt 

where At = ( f " + l - -  t"). Solving for dvJdt in equation (1  1) and substituting the result into equation 
(10) for d2yi/dt2 yields 

y ~ t n + i ) = v ~ ( t " ) + ~ [ ~ i ( t n ) + v ~ t n +  91 +o(~t)3. (12) 
Similar expressions for the zi and Bi can be obtained as 

The linear and angular velocities at the (n + 1)th time step are determined by use of Euler explicit 
differencing in conjunction with equation (9). The truncation error is monitored at each time step 
and the time step can be adjusted upward or downward in response to this error. Although 
continued research is being undertaken to optimize the time integration, the method outlined 
above is the one used to obtain the results in this paper. In selected test problems, these results 
were compared with those of some of the more sophisticated schemes mentioned above as an 
independent check of their accuracy. 

A TEST PROBLEM 

In order to test the numerical algorithm, the case of two identical spheres with identical initial 
conditions, but with different initial positions, is considered (Figure 2). The simulation is run until 
steady state. This problem is considered since the BEM results at steady state can be compared 
with the analytic results of Stimson and Jeffrey" and Goldman et a1.I6 

The spheres were given an initial sedimentation velocity approximately 50% higher than the 
steady state velocity for the isolated single sphere, and no initial angular velocity. For times 

\ 1'1 

DIRECT ION 
OF ROTATION 

Figure 2. Two identical spheres settling at an angle 
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greater than zero, the particles would decelerate and spin up toward steady state conditions. It is 
convenient to present the results in terms of the dimensionless physical quantities. The 
characteristic length scale is given by the radius of the sphere a, and the characteristic velocity is 
given in terms of the terminal sedimentation velocity V ,  of an isolated ~ p h e r e : ~  

The components of the steady state velocities are given by (Uh, V,) in the horizontal and vertical 
directions respectively. For cases in which Uh = 0, the drag correction factor 1 can be defined as the 
ratio of terminal vertical velocity U ,  to U ,  since the drag is directly proportional to the velocity. 

The spheres were discretized into the boundary elements by subdividing the surface into lines of 
longitude and lines of latitude. Hence both quadrilateral and trilateral elements were employed. 
Several discretizations were tested. Results are listed below for two of the discretizations. Grid A 
used 100 nodes to define the geometry and contained 32 boundary elements. Grid B used 244 
nodes to define the geometry and contained 72 boundary elements. Generally, less than 50 time 
steps were necessary to obtain steady state conditions. Grid A took 1-97 CPU-s per time step while 
grid B took 11.67 CPU-s per time step on a CRAY XMP time-sharing system. 

The results obtained by the BEM for the case of the spheres falling side by side are compared 
with the exact solutions in Table I. The accuracy of the BEM improved with the finer grid and also 
improved as the gap between the spheres was increased. There are two causes for the degradation 
in accuracy as the gap width was decreased. First, the boundary element program used a fixed 
quadrature rule, so that when field points on one sphere were close to the source points contained 
in a boundary element on the adjacent sphere, the singular nature of the integrand caused a 
growth in quadrature errors. Secondly, for closely spaced spheres there are large gradients in the 
stress field, making the constant strength elements less accurate. Nevertheless, errors in the drag 
correction factor were all less than 0.3% while the errors in the steady state angular velocity were 
less than 3%. Similar results for the cases of two spheres falling parallel to their lines of centres 
(that is, 8 =90") and for two spheres falling at various angles between their lines of centres and the 
horizontal are shown in Tables I1 and 111. For the case of the two spheres falling parallel to their 
lines of centres, the drag correction factors compared extremely well with the exact results. 
Because of the flow field symmetry, the angular velocities of the spheres are zero. For the case 
when the angle between the lines of centres of the two objects and the horizontal is not equal to 0" 
or 90", in the steady state, the particles will possess both a vertical sedimenting velocity U,  and a 
horizontal drift velocity U,. Again, as seen in Table 111, the BEM results compare quite well with 
the exact results. 

An example of the transient response for the case 8 = 45", h = 1.543 1 is shown in Figure 3. Recall 
that the spheres were given an initial sedimenting velocity but no initial drift or angular velocity. 
The sedimenting velocity U ,  is seen to monotonically decrease towards its steady state value. The 

Table 1. Comparisons of the solutions obtained by the BEM with the exact solution for two equal spheres 
falling side by side 

Drag correction factor 1 Angular velocity a)olU,  
__- __--. 

hla Grid A Grid B Exact Grid A Grid B Exact 

2~000 0.834 1 0.8363 0.8363 00476 0.0473 0.0467 
1.543 1 0-7918 Q7935 0.7945 0.0785 0.0782 0.0775 
1.1276 0.7309 0.7323 0.7327 0.1354 Q 1348 0.1314 
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Table 11. Comparisons of the solutions obtained by the BEM 
with the exact solution for two equal spheres falling parallel to 

their lines of centres 
~~~~~~~ 

Drag correction factor i 

hla Grid A Grid B Exact 

243000 0.7405 07422 0.7423 
1543 1 0.7004 0.7035 07025 
1.1276 06575 0.659Q 06596 

Table 111. Comparisons of the solutions obtained by the BEM using the fine grid (grid B) with the exact 
solution for two equal spheres falling at various angles 0 between the line-of-centres and the horizontal at a 

spacing of h = 1.5431 

a l w J t  
- 

UvI u, u Jut 
0 BEM Exact BEM Exact BEM Exact 

30" 1.3001 1.2998 0.07 1 8 0.07 1 5 0.0683 0067 1 
45" 1.3423 1.341 I 60828 00825 00560 0.0548 
60" 1.3836 1.3823 0.07 17 0.07 1 5 00397 00388 

drift velocity Uh and angular speed w increase rapidly from their imposed initial conditions. The 
angular velocity actually slightly overshoots its steady state value before reaching steady state. 

INTERACTION O F  A SEDIMENTING PARTICLE WITH A NEUTRALLY 
BUOYANT PARTICLE 

Three systems, each composed of a sedimenting particle (S) and a neutrally buoyant particle (NB), 
are considered (Figure 4). System 1 contains two spherical particles, whereas systems 2 and 3 
contain a spherical sedimenting particle and a neutrally buoyant prolate spheroid of aspect ratio 
0.5. In system 2, the major axis of the spheroid is aligned with the vertical axis, while in system 3 
the major axis of the spheroid is aligned with the horizontal axis. The viscosity of the fluid is 
10 Pas. The density of the sedimenting particle is 2375 kgm.'3, while the density of the fluid and 
neutrally buoyant particle is 1182 kgm--3 in all cases. The radius of the sedimenting sphere is 
0.2cm, resulting in the terminal velocity of the isolated sedimenting sphere given by 
U, =0-02651 cms- '. Under these conditions the Reynolds number is of the order which is 
well within the range of low-Reynolds-number flow. 

As in the test problem, several grids were considered. However, since it was desired to run the 
simulation for up to 4500 time steps, grids with the same number of nodal points as in grid A of the 
test problem were chosen. (These results were compared those of finer discretizations run over 
fewer time steps as an ad hoc check of accuracy.) The time step ranged from a low of 0.008 s to a 
high of 0025 s. The time step was periodically adjusted in response to the local truncation error. 

The positions of the centres of the particles for the three systems are plotted at 2 s intervals in 
Figure 5. The motion of the sedimenting particle caused the neutrally buoyant particle to move 
vertically downward and to rotate counterclockwise. Initially, both particles bowed outward from 
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T h e ,  Sec 

Figure 3. The transient response of two sedimenting spheres; 0=45", h =  1.5431 

NB I( 
3 4  5 

Y Y F 1 NB 4 5 

SYSTEM 1 SYSTEM 2 SYSTEtI  3 

Figure 4. Three systems composed of a sedimenting particle ( S )  and a neutrally buoyant particle (NB) 

each other. This opposing horizontal motion persisted until the sedimenting particle passed the 
neutrally buoyant particle, at which time the two particles moved horizontally toward each other. 
This behaviour was a result of symmetry of the Stokes equations. That is, because of this 
symmetry, a change in direction of the resultant moments and horizontal forces on the two 
particles was observed as the sedimenting particle moved past the neutrally buoyant particle. In 
fact, if the simulation was run long enough, the neutrally buoyant particle would eventually move 
to the left of its original horizontal position as it was dragged into the wake of the sedimenting 
particle. The angular velocity of the neutrally buoyant particle as a function of time is plotted in 
Figure 6 for the three systems. It can be seen that the maximum angular velocity occurred very 
close to the time at which the sedimenting particle overtook the neutrally buoyant particle, again a 
manifestation of the symmetry of the Stokes equations. The associated rotation of the neutrally 
buoyant particles ranged from 35" to 46" at the end of the simulations (t = 36 s). 

The initial vertical positions of the centres of the two particles were chosen to be the same in all 
three simulations. A measure of the resistance caused by the neutrally buoyant particle on the 
sedimenting particle can be given by the time it takes for the centre of the sedimenting particle to 
reach the same vertical elevation as the neutrally buoyant particle. This time can be designated as 
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Figure 5. Trace of the locations of the centres of the two particles plotted at 2 s intervals: (a) system 1;  (b) system 2; 

(c) system 3 

the crossover time. The crossover time for system 1 was 18.2 s; for system 2, 16.2 s; and for 
system 3,160 s. The crossover time for system 1 was larger than for the other two systems for two 
reasons. First, the neutrally buoyant sphere had a larger surface area than the prolate spheroids; 
and secondly, the particles came closer together in system 1 than in the other two systems, 
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Figure 6. Angular velocity of the 'neutrally buoyant particle 

Table IV. Maximum lateral deflections 

Case Sedimenting particle Neutrally buoyant particle 

1 - 0.0734 
2 - 0.0498 
3 - 0'047 1 

0.369 
0296 
0252 

resulting in a stronger hydrodynamic interaction. The crossover times are seen to be essentially the 
same for case 2 and case 3. The maximum lateral deflections of the two particles are given in 
Table IV. Again, since the initial horizontal position of the particles was the closest in system 1, it 
is to be expected that the maximum lateral deflection should be the largest in this case. The 
maximum lateral deflection of the prolate spheroid with major axis aligned vertically is seen to be 
larger than the case in which the major axis is aligned horizontally. This result is a consequence of 
the larger projected vertical area for the case with vertical alignment. 

DISCUSSION 

A numerical simulation of the hydrodynamic interaction and resultant motion of a sedimenting 
particle and a neutrally buoyant particle was performed by coupling a quasi-steady analysis of 
multiparticle Stokes flow interactions using the BEM with the rigid body equations of motion. 
The program was tested by allowing a system of identical particles to come to steady state and 
comparing the results to analytic solutions. Although this is no guarantee that the transient 
motion was properly simulated, it did provide some confidence in the numerical algorithm. Three 
systems containing a sedimenting particle and a neutrally buoyant particle were considered. The 
results indicated that the neutrally buoyant particle could be dragged significantly simply by the 
hydrodynamic interactions. The motion of the system showed some horizontal symmetry. The 
symmetry in the vertical direction was not evident because of the gravitational force. 
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Although only exterior flows containing two particles have been considered in this work, the 
methodology is quite general. The extension to more than two particles is simple from a 
programming point of view. In fact, the current BEM code is dimensioned to accept up to six 
particles. Further, the extension to the cases of interior flows, shear flows, extensional flows and 
the like requires relatively few programming changes. The major constraint at present is the 
computational cost. Even though the CPU time per iteration could be reduced to 1.97 s for two 
particles, this still entailed up to 2* h CPU time on a CRAY XMP for the particle to travel five 
diameters. It should be remembered, however, that the current method is not limited to simple 
geometries and particles of equal density. Further, it is believed that the current computer 
program can be made more efficient in both the areas of the BEM calculations and the time 
integration in order to consider multiparticle systems. 
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